The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders

نویسندگان

  • Kelsey B. Law
  • Dana Bronte-Tinkew
  • Erminia Di Pietro
  • Ann Snowden
  • Richard O. Jones
  • Ann Moser
  • John H. Brumell
  • Nancy Braverman
  • Peter K. Kim
چکیده

Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders

Peroxisome biogenesis disorders (PBDs) is a group of diseases caused by mutations in one of the peroxins, proteins responsible for biogenesis of the peroxisomes. In recent years, it became clear that many peroxins (e.g., PEX3 and PEX14) play additional roles in peroxisome homeostasis (such as promoting autophagic degradation of peroxisomes or pexophagy), which are often opposite to their origin...

متن کامل

Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p involved in shuttling of the PTS1 receptor Pex5p in peroxisome biogenesis.

The peroxisome is a single-membrane-bound organelle found in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient PBDs (peroxisome biogenesis disorders), such as Zellweger syndrome. Two AAA (ATPase associated with various cellular activities) peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for CG (complementation group) ...

متن کامل

The AAA peroxins Pex1p and Pex6p function as dislocases for the ubiquitinated peroxisomal import receptor Pex5p.

The discovery of the peroxisomal ATPase Pex1p triggered the beginning of the research on AAA (ATPase associated with various cellular activities) proteins and the genetic dissection of peroxisome biogenesis. Peroxisomes are virtually ubiquitous organelles, which are connected to diverse cellular functions. The highly diverse and adaptive character of peroxisomes is accomplished by modulation of...

متن کامل

Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p.

Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for peroxisome biogenesis disorders of complementation group 1 (CG1) and CG4, respectively. PEX26 responsible for peroxisome biogenesis disorders of CG8 encodes Pex26p, the recruiter of Pex1p.Pex6p complexes to peroxisomes. We herein assigned the binding regions between human Pex1p and Pex6p and elucidated pivotal...

متن کامل

PEX5 and Ubiquitin Dynamics on Mammalian Peroxisome Membranes

Peroxisomes are membrane-bound organelles within eukaryotic cells that post-translationally import folded proteins into their matrix. Matrix protein import requires a shuttle receptor protein, usually PEX5, that cycles through docking with the peroxisomal membrane, ubiquitination, and export back into the cytosol followed by deubiquitination. Matrix proteins associate with PEX5 in the cytosol a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017